
9. V. N. Beshkov and Kh. B. Boyadzhiev, Inzh.-Fiz. Zh., 27, No. 4, 702-706 (1974). 
i0. Chr. Boyadjiev, Int. Chem. Eng., ii, No. 3, 470-474 (1971). 
ii. Chr. Boyadjiev, Int. Chem. Eng., Ii, No. 3, 457-464 (1971). 
12. Chr. Boyadjiev and N. L. Vulchanov, C. R. Acad. Bulg. Sci., 40, No. ii, 35-38 (1987). 

TWO-PHASE MULTICOMPONENT MASS TRANSPORT IN A DESCENDING, 

STRAIGHT-THROUGH FLOW OF PHASES 

E. Ya. Kenig and L. P. Kholpanov UDC 536.24.532.529.5.001.24 

The parameters of combined, multicomponent mass transport in a two-phase gas 
(vapor)-liquid system moving as a descending, laminar straight-through flow 
are investigated theoretically, and methods for calculating them are proposed. 
The methods are based on solving the system of differential equations for multi- 
component convective diffusion in both phases with an allowance for the conjuga- 
tion conditions at interface. The diffusion equations are solved both numerically 
and analytically in the boundary-layer approximation. The development of the 
process over large "lengths of the contact device is investigated, and the 
asymptotic values of the component concentrations are determined. 

Modern theory and industrial practice require adequate methods for investigating and 
calculating complex mass-exchange processes. The development of such methods, in turn, 
requires the tool of differential equations of convective mass transport [i]. When used 
for the description of multicomponent systems, these equations are characterized by matrix 
vectors and a conjugate form, which makes their solution difficult. For two-phase, multi- 
component systems, the solution becomes considerably more complex, since the matrix conjuga- 
tion equations which relate the component concentrations of both phases at the interface 
also have a conjugate character. 

The present article presents a theoretical investigation of the mass-exchange process 
in a multicomponent, gas-liquid mixture, based on solving the system of differential equa- 
tions of multicomponent convective diffusion in conjugate form. 

Consider an n-component mixture moving in a rectangular channel as a descending, 
straight-through flow of phases. The x axis is oriented along the channel axis, while the 
y axis is perpendicular to it (Fig. i). We make the usual assumptions [2-4]: The physical 
characteristics of the phases are constant, external forces are absent, phase equilibrium 
conditions prevail at the interface, and the thickness of the liquid film is constant. Then, 
the equations of convective, multicomponent diffusion are given by 

u~(y) ac~ = [D~] a2c-~, �9 
�9 ax  ay~ " ( i )  

OCg 02Cg 
Ox Og 2 '  

while the boundary conditions are assigned by the following relationships: 

at the channel inlet, 

(2) 

x=0, C~=Cos Cg=C0g; 

at the channel wall (impenetrability condition), 

(3) 
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Fig. I. Coordinate system and velocity 
distributions in the phases. 

y ~ O ,  OC~ _ O; 
ay  (4) 

At the channel axis (symmetry conditions), 

y = R ,  ocg _ 0 ;  (5) 
Og 

a t  t h e  i n t e r f a c e  ( c o n d i t i o n s  o f  p h a s e  e q u i l i b r i u m  and c o n t i n u i t y  o f  f l ow  o f  t h e  com- 
p o n e n t s ) ,  

V = ho, Cg= [MlC:~: (6)  

Jg= J% 

Using the generalized Fick law, we reduce the latter equation to the following form: 

( 7 )  

[D~ OCg _ [D.0] O~C.s (8 )  
@ ~ Og 

All matrices and vectors in gqs. (1)-(8) are of the (n-l)-th order. 

System (1)-(2) with the boundary conditions (3)-(6) and (8) constitutes a system oF 
parabolic-type differential equations with boundary conditions of the fourth kind. The 
system cannot be solved in this form. 

In order to transform the system, we shall utilize an important property of the 
matrices of diffusion coefficients [Ds and [Dg], which consists in the possibility of 
reducing them to the diagonal form [2, 5]: 

[L] -t [Ds [LI = ~D~_, [O] -~ [Dg] [G] = '- D ' g j ,  (9)  

where  D ' s  and D 'g  i a r e  t h e  e i g e n v a l u e s  o f  m a t r i c e s  [D Z] and [Dg],  which  c o n s t i t u t e  r e a l  
p o s i t i v e  numbers ,  

By m u l t i p l y i n g  m a t r i x  [LJ -1 on t h e  l e f t  by Eq. ( 2 ) ,  we 
obtain 

dC'~. ~-D" 82C'~, 
".~(~) ox - . L - - s  ~g(~t) . . . .  

(i), and matrix [G] -I by Eq. 

Ox --  < Dg ~ O!/a , 
(~o) 

where 

At the same time, 

Cs == [L]-~Cs Cg-~ [G]-~Cg. (L1) 
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Fig. 2. Integral-mean dimensionless concentrations 
of components in the liquid (a) and the gaseous (b) 
phases as functions of the length of the contact 
device (the solid curves pertain to a flat velocity 
profile, while the dashed curves pertain to a para- 
bolic profile), i) and 2) First component; 3) and 
4) second component. 

f o r  x ~ 0 C-~ = C;~ = [LI-'Ce.s Cg = Cog== [Ol-~eog; (12)  

f o r  .q = 0 aC.'g OCg 
Oy = 0; for  y = R Og -- 0; (13)  

- for  V = ho C~ = JR] C~, where [R] == [G] - '  [M]  [L]; (14) 

oc; ac~ (15) 
[D~ [G]-)-~- = [D~] [L] Og 

In  t h e  d e r i v e d  s y s t e m  ( 1 0 ) - ( 1 5 ) ,  t h e  c o n n e c t e d n e s s  o f  t h e  e q u a t i o n s  p e r s i s t s  o n l y  i n  
t h e  b o u n d a r y  c o n d i t i o n s  a t  t h e  i n t e r f a c e  p h a s e s  b e tw een  (14)  and ( 1 5 ) ,  w h i l e  t h e  e q u a t i o n s  
o f  c o n v e c t i v e  mass t r a n s p o r t  (10)  and (11)  can  be c o n s i d e r e d  as  s y s t e m s  o f  i n d e p e n d e n t  d i f -  
f e r e n t i a l  e q u a t i o n s  o f  t h e  (n - 1 ) - t h  o r d e r .  

We i n t r o d u c e  d i m e n s i o n l e s s  v a r i a b l e s  by means o f  t h e  r e l a t i o n s h i p s  

x = Rezho~;  
4 

v = hon. (0 ~< y ~< ho); V = R - -  (R - -  ho) n~ (ho ~< V ~< ~); 

c~ = Co~ + ~ -a~c;  c ~ =  C o g - - r 6 g . g ,  

(16) 

where 

A Z ,  = C ' ~ - - C o g , ;  A m = C ~ m - - C s  k = 1. 2 . . . . .  n - -  1; 

C;~--- [Rl-~Cog; C~g= [R] C' 0g. 

Then, system (10)-(15) assumes the final form 

a~ a ~ '  l~vg(%) a~ an~' (17) 
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Fig. 3. Integral-mean dimensionless component 
concentrations in the liquid phase (!-4) and 
dimensionless mass fluxes of components (5-8) 
as functions of the length of the contact 
device (solid curves pertain to the numerical 
solution, while dashed curves refer to the 
analytical solution), i), 2), 5), and 6) 
First component; 3), 4), 7), and 8) second com- 
ponent. 

where 

Sclh =:vg/DgG Sc~ = %/Dgk, k =  ], 2 . . . . .  t t - - ] ;  ~ =  'Reg(R- -h~  
Res (18)  

For ~=0 c=0, g=e (e is a vector consisting of unit elements); ( i 9 )  

for  111 = 0 0C/0111 = 0; for  112 ~ 0 O~,,IOfl2 = 0; (20) 

=: = ~a . (2i) for 111 112 l ~ ~ [Q] C, where [Q] = --r-Ag_j-1 [~] "g~" 

0~0a]~ ~--- [M~] --~-~1 ' 0 c  where IMp] -- R--hObo r a g ;  -~ [G] -~ [Dgl -~ {D~] [L] ~As ~. (22)  

It should be noted that matrix [Q] has a remarkable property: The sum of elements of 
each of its rows is equal to unity. Actually, 

n - - 1  n - - I  n - - 1  ,~-I 1 I 

]=l A~ ]=I " Af~ ]=j i=1 

-- I (C0m_C~m)=l. 
Ag~ 

The r e l a t i o n s h i p  be tween t h e  f low v e l o c i t i e s  o f  t h e  p h a s e s  and t h e  t r a n s v e r s e  c o ~ r l i n a t e  
f i g u r i n g  in  t h e  c o n v e c t i v e  d i f f u s i o n  e q u a t i o n s  can assume d i f f e r e n t  f o rms .  We s h a l l  su!~se- 
q u e n t l y  c o n s i d e r  t h e  f low o f  p h a s e s  a t  m e a n - d s i c h a r g e  v e l o c i t i e s  ( f l a t  p r o f i l e s ) ,  w h e r e  

v g (nl) = ~ ,  = I; vg(n2) = v-g= 1, 

and also flow at velocities obeying the parabolic law (Fig. i): 

(23) 

vg (nl) = sl + a ln l  + bln~; vg(n2) = s2 + a2n2 + b2~1~. 

The c o e f f i c i e n t s  o f  r e l a t i o n s h i p s  (24)  can be found  f rom t h e  hyd rodynamic  c o n d i t i o n s  

(24) 
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Dimensionless component concentrations in the 
liquid phase as functions of the length of the Contact 
device for different values of Sc's (the solid curves 
pertain to values in the core of phase, the dashed curves 
refer to those at the interface, and the dash-dot 
curves pertain to values at the wall), i) and 2) Sc's = 
70.0; Sc'~2 = 90.0 (I, cl; 2, c2); 3) and 4) Sc's = 
700.0; Sc'~2 = 900.0 (3, ci; 4, %). 

9 = 0 ,  u .~=O;  y ~- R,  Oug/O 9 = 0 ;  

Oug 0 %  
y = ho, u ~s= Ug, P'~" 0!t --  g'g Oy ' 

and also from the definitions of the mean velocities of the liquid and the gas: 

1 ho R 

ho o R - -  ho h. 

which, in dimensionless form, are given by 

Ovg 
~]1 = O, D'~ = O; T]~ = O, - -  O; 

Orh 

Ov.~ = Ovg 

lh = ~l~ = I, ~r ~ = Vg, • O~h a lh  

1 1 

0 0 

(25) 

where 

q~ ~ --=---; ~ - - ~ - -  

With an allowance for (25), relationships (24) assume the following form: 

v.s ('ql) = 3 [2 (2• - -  3q~ + 1) ~11 + (6(p - -  2• ~121; (26)  
4• - -  3q) 

3 ( 2 7 )  
V g ( ~ )  = 4 ~  - -  3-----~ [ (2~ - -  ~ - -  •  + ~ ( a ~  - 2) n~]. 

Thus, the solution of our dimensionless problem (16)-(22), (26), and (27) is determined 
by the dimensionless parameters ~, • 6, rScs ' Scij, [Q] and [ME] , i.e., it depends on 2n(n-l) + 3 
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quantities. In the case of a flat profile, the number of determining is equal to 2n(m-l) + I. 

The solution is obtained by' means of the trial-and-error method, using finite-differ- 
ence operators (three-point pattern for the implicit scheme [6]): 

0W _ W([ ,  /) - -  W ([ - - 1 ,  ]) 0 W  _ W([ ,  / ) - - W ( i ,  / - - 1 )  

a~w, _ ~v(~, l - - 1 ) - - 2 ~ v ( ~ ,  i ) + v ; ' ( i ,  1 + 1 )  
o~12 (h~l) z ' 

where i and j are the numbers of steps along the vertical and the horizontal, respectively, 
A$ and Aq are the pertinent magnitudes of the steps, and W is the concentration of the k-th 
component in the liquid or the gaseous phase. 

Since the relationships between the dimensionless component concentrations and their 
derivatives at the interface between phases have a conjugate character (expressions (2]) and 
(22)), determination of the boundary trial coefficients requires the solution of a system 
of linear algebraic equations at each step along the vertical. In this, for greater accuracy, 
the derivatives at the interface are replaced by finite-difference analogs, which make~: it 
possible to approximate them with an accuracy to small quantities of the third order [7]: 

OW[ = 1 

Orl ,=~ 12 (A~I) 
~ - [ 8 f ( i ) - - ~ 8 ~ r  N - - ~ ) + y ( i ,  N - _ 9 ) + 9 ~ 7 ( 4  N)I, 

where N is the number of steps along the horizontal, while f(i) is the value of the corre- 
sponding function at the interface, 

f 03 :-  w (e, N - -  1) § ~r (i, N) 
2 

In order to calculate the parameters of multicomponent mass transport, it is necessary 
to determine the fundamental matrices [L] and [G], by means of which the relationships of 
diagonalization (9) are realized. As is known [8], the fundamental matrix of the [D] matrix 
consists of its right-hand column eigenvectors, defined for each eigenvalue D' k by the rela- 
tionship 

[D] v~ = D~v~. ( 2 8 )  

If we multiply (28) by an arbitrary real nonzero constant @k, we obtain 

[D] z~ = D'~z~, 

where Z~=~hVk also is the right-hand column eigenvector [D] corresponding to D' k. 

Utilizing this property, we can find the nondegenerate solution of system (28). For 
this, we impose an additional condition on the set of right-hand column eigenvectors v~ 

(vl..)z=Skz; k, i =  1, 2 . . . . .  n - - 1 .  

In other words, the arbitrary constants ~k are chosen so that every k-th element of the k-th 
eigenvector is equal to unity. Then, instead of the system of equations (28), we obtain the 
equivalent system 

[Dk] zk --=- dh, ( 2 9 )  

where 

[D13 u = ([Dlu - -  D~6,j) (i - -  6h~) § G ~ G i  

(dk),----61~i, k, i, ]----1,  2 . . . .  , n - - 1 .  
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Fig. 5. Dimensionless component concentrations in the 
gaseous phase as functions of the length of the contact 
device (the parameter values and the notation are the 
same as in Fig. 4; the dash-dot curve pertains to values 
at the axis of the contact device), i) and 3) gl; 2) 
and 4) g 2 . 

For i z k, (29) becomes (28), while, for i = k, we obtain the simple equations 

[O~h] = 6k;,  (dh)k ~ 1, 

and, consequently, (z~)k= I. 

System (29) is solved by means of the usual methods for each value of k, k = i, 2 ..... 
n-l, which actually facilitates the writing of the fundamental matrix of the [D] matrix. 

The proposed method of determining the fundamental matrix is applicable to matrices without 
multiple eigenvalues, which is virtually always the case for multicomponent diffusion pro- 
cesses. It can be proven that the system of dimensionless parameters determining the solu- 
tion of the problem is invariant with regard to the choice of the fundamental matrices ILl 
and [G]. 

The distributions of dimensionless concentrations in the phases c(~, ~i) and g(~, ~) 
are the result of the numerical solution of the system of differential equations for convec- 
tive diffusion (17). They can be used for determining any characteristic of two-phase, multi- 
component mass transport, for instance, the component concentrations at the wall and the 
axis of the channel and at the interface; the integral-mean values, defined by the expressions 

1 1 

c(~) = J" v~, (%) c (~, ~h) dvh; g'(~) = S vg(~.) g (~, ~h) d~h, (30) 
o o 

interphase component fluxes, etc. 

As an example, we shall consider three-component mass exchange in a two-phase system 
characterized by the following dimensionless parameters ~=0.01; • 6=1410.85; Sc~I=70,82; 

t Scs Sc~,1=0.81; Sc~2= 1,04 ; 

[8.24 --7,24] [M~] = [--43,90 44,02 ] 
[Q] = [1.30 --0.3%; [.--19,76 --0,13 " 

In principle, such parameters can describe any gas or vapor-liquid mass-exchange process 
in a three-component mixture, in particular, three-component film distillation or isothermic 
absorption by the nonvolatile film of the absorbent of a two-component gaseous mixture in 
the presence of an inert component (see [5]). Figure 2 shows the relationships between the 
integral-mean dimensionless concentrations of components and the length of the contact device 
in the liquid and the gaseous phases. 
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Fig. 6. Dimensionless component mass fluxes as functions of 
the length of the contact device (the parameter values are 
the same as in Fig. 4). i) and 3) Jl; 2) and 4) j~. 

In view of the fact that the mass transport process under consideration has a boundary- 
layer character, the gradients of component concentrations near the interface reach consider- 
able values. In particular, this pertains to the mass-exchange segments located at shall 
distances $ from the inlet of the contact device. In view of this, we can substitute the 
following two conditions for the boundary conditions at the wall and the axis of the contact 
device (see [4]): 

C ~ C 0 . ~  f o r  y--->---oo; Cg~-Cog fo r  y--->-oo ( 3 1 )  

and obtain the analytical solution of the problem in the boundary-layer approximation. 

Let ~8=I--~i and n4 = I--~ The velocities of the liquid and the gaseous phases are 
assumed to be equal to their integral-mean values (see (23)): 

W i t h  an  a l l o w a n c e  f o r  t h e s e  r e l a t i o n s h i p s ,  t h e  p r o b l e m  i n  d i m e n s i o n l e s s  f o r m  i s  d e f i n e d  a s  
follows: 

ac _~Se~-~  a9_s ~ ag _ ~ s c ~ - i  a~g. ' 

for~ ~ 0 C ~ O, g = e; 

f o r  ~3 ~ ~4 ~ 0 g =: [Q]C,  Og ~ [M~] OC . 
O~ 0~8 

(32) 

(33) 

( 3 4 )  

fo r  ~]~-+oo s O; f o r  114-+co g =  e. (35) 

System (33)-(35) is solved by using the analytical method proposed in [i, 9], whiie 
the resulting distributions of the dimensionless component concentrations are given by 

c : (~ I~  - -  ~Ss e; g = (~-I_~ - -  r S g : ) [ Q ]  [oqe -t- ' -Sg:e ,  (36) 

S~i(~,~ % ) = e r f ( z l i ) ,  z l i =  2~3 p / S c ~ g t  . . . . . .  (37) 

Ss (~, ~h) ~ err (&i), n~ 1 /  Scs 
z ~ = : - y - V  ~ ' 

1 . . . .  0.s [M~] r S c ~  ~ 
[=] = ( [QI -  1~1) -1, [W] = l / V  ~cgj 

(38) 

(39) 
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If we obtain successively the inverse transforms of relationships (36)-(39) by means of the 
expressions (16) for introducing dimensionless variables and the diagonalization expressions 
(ii), we arrive at expressions for the mole concentrations C~ and Cg that are equivalent 
to those derived in [i, 9]. 

The distributions of the component concentrations (36) make it possible to determine 
the dimensionless fluxes of components through the interphase surface. For this, we dif- 
ferentiate expressions (36) at the points q~ = O, and ~4 = O, respectively: 

Oc I = 1 r ~  , 0 s .  , 

Og J ]//-'1~ ~-ScgjO,5 ~- O~h n,=o . . . .  z~ ([Q] [=] -- l~)e.  

In  c o r r e s p o n d e n c e  w i t h  ( 3 4 ) ,  we d e f i n e  t h e  d i m e n s i o n l e s s  f l u x  ] by t h e  e x p r e s s i o n  

(40) 

ONe n,=0 ~=0" (41) 

In passing to dimensional flux values, we find from (40) and (41) 

The latter expression coincides with that derived in [i, 9]. 

Figure 3 shows the distributions of the dimensionless integral-mean component concentra- 
tions in the liquid phase and of the dimensionless mass fluxes of components, which have 
been obtained by means of the numerical method (flat velocity profile) and also expressions 
(36)-(39) and (41). The values of the problem parameters are the same as before (see Fig. 2). 

Analysis shows that the analytical solution (36) is relatively adequate for describing 
the process of two-phase, multicomponent mass exchange over the initial segment at the con- 
tact device, where there is no appreciable effect of mass transport on the component concen- 
trations at the wall (liquid phase) or at the channel axis (gaseous phase). Therefore, if 

the length of the contact device does not exceed a certain given value ~a(~a-~m~n{Sc~h}), we 

can use expressions (36)-(39). If ~>~a , the numerical method described above should be 
used. 

We shall now consider the development of the process over large lengths. If ~ + ~, 
the concentration gradients gradually diminish, the process of mass transport slows down 
(see Fig. 2), and the component concentrations at the interface and in the cores of phases 
tend to the same asymptotic values. 

In order to determine the asymptotic behavior of the component concentrations for 
+ ~, we use the relationships 

i 1 Och I " d v,zch (~, rh) drl~ = Sc~,k 0~1~ ,1,=1' 
d~ ~i 

d I 1 Ogh [ 
- - g - !  - -  . , k = l ,  2 , . . . , n - 1 ,  

(42) 

which can be obtained by integrating the equations of convective diffusion in the phases 
along the thickness of the film and the gas layer, respectively, with an allowance for the 
phase continuity equations. 
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where 

We have the following from boundary condition (22): 

~=~ Oe = [94 ~ S c [ ~ - 1 0 ~  , % - '  = IM I ' . = ,  .= ,  

r- " - - I  r -  " bq]= Scg~ [Md S c ~ .  

W i t h ,  an a . t lowance  f o r  (43 ) ,  we o b t a i n  from (42) 

d l d i 

or (see (30)) 

at 

It follows from (45) that the expression within brackets is constant for any $. 
ular if $ = 0, when conditions (19) are satisfied, this expression is equal to 
consequently 

(43) 

(44) 

(45) 

In partic- 

(46) 

Equation (46) represents the dimensionless form of the mass balance for a contact device 
segment of arbitrary length, starting at ~ = 0. 

We now consider that, for ~ § ~, 

and use boundary conditions (21): 

~ =  [Q]cq (47) 

Then, as a result of simultaneous solution of (46) and (47), we obtain the sought asymptotic 
values of the vectors of component concentrations: 

c(~-.--~ oo) = ([Q] - -  T [Q] e; (48) 

( i)i g(~-.oo)=[Q] [Q]_ ~ [9j, e. 

As an example, we shall consider the two-phase absorption of a three-component mixture 
where one of the components is inert. Figures 4 and 5 show the characteristic relationship 
between the dimensionless component concentrations in the liquid and the gaseous phases and 
the length of the contact device, plotted for a parabolic velocity profile and the following 
values of the dimensionless parameters: ~=0.01;• ~=1400,0; Sc~ =0.8; Sc~2=l,0; 

,r 2,25 --1.25].  [--40.0 50.0] 

[Q1 = [1.30 - o , a o | '  [Md = L--20.0 15.0J" 

The solid curves pertain to concentration profiles in the phase core (integral-mean val"aes), 
the dashed curves pertain to the profiles of surface values, while the dash-dot curves :efer 
to profiles of values at the wall (liquid phase) and at the channel axis (gaseous phase). 
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The diagrams show clearly that the process reaches the limiting equilibrium values 

~(~=~) and g(~=~) (see (48) and (49)). 

Figure 6 shows the variation corresponding to Figs. 4 and 5 of the dimensionless com- 
ponent mass fluxes in relation to the length of the device. The curves were plotted as a 
result of differentiation of the concentration profiles at the interface between phases. 

In conclusion, it should be noted that the calculation methods proposed in the present 
article make it possible not only to determine the fields of component concentrations and 
the flux of matter through the interphase surface, but also determine the required length of 
the device and investigate theoretically the effect of the multicomponent mass transport 
parameters on the solution of the problem. 

NOTATION 

C , vector of mole concentrations of the mixture components; C', vector of the concentra- 
tions transformed by means of expressions (II); [D], matrix of the multicomponent diffusion 
coefficients; tO,, diagonal matrix consisting of eigenvalues of matrix [D]; [G] and [L], 
fundamental matrices of the [D ] and [Ds matrices; h0, thickness of the liquid film; ~I~ , g 
unit matrix; Jk, molar flux of the k-th component; [M], matrix of phase equilibrium constants; 
n, number of mixture components; R, half-width of the channel; u and u, phase velocity and 
its integral-mean value, respectively; v, dimensionless phase velocity; x and y, coordinates; 

and q, corresponding dimensionless coordinates; ~, kinematic viscosity coefficient; p, 
dynamic viscosity coefficient; 0 , null vector; e , unit vector; 6ij, Kronecker symbol; Res = 
4ug/h0/~ ~ and Reg=4z~R--ho)/~g, Reynolds numbers for the liquid and the gaseous phase, respec- 

tively; Sc~ =v/D~ , modified Schmidt number for the k-th component. Subscripts: 0, value at 
the inlet of the contact device; e, equilibrium value; k, value for the k-th component; s and 
g, liquid and gaseous phase, respectively. 
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